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ABSTRACT

The paper presents generation of adaptive hybrid prismatic/tetrahedral grids for complex 3-D ge-

ometries including multi-body domains. The prisms cover the region close to each body's surface, while
tetrahedra are created elsewhere.

Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is

a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main

feature of the present advancing front tetrahedra generator that is different from previous such methods

is that it does not require the creation of a background mesh by the user for the determination of the

grid-spacing and stretching parameters. These are determined via an automatically generated octree.

The second development is an Automatic Receding Method (ARM) for treating the narrow gaps in

between different bodies in a multiply-connected domain. This method is applied to a two-element wing
case.

A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is de-

veloped to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation

scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.

INTRODUCTION

Simulation of flows around three-dimensional bodies is a major issue in computational fluid mechanics.

Geometrical and flow-field complexity combine to make 3-D computations a pacing item. The generation

of a body-conforming grid has proven to be a difficult task [1, 2].

The success of a structured grid generation may be extremely dependent on geometry and operator

proficiency. BLock-structured schemes exist which, based on extensive user input, break the computational
domain into a number of blocks within which hexahedra are constructed. A radical alternative to structured

meshes is to use tetrahedra. Tetrahedral grids provide flexibility in 3-D grid generation since they can cover

complicated topologies easier compared to the hexahedral meshes. This does not come without a price,

viz., unstructured grids require a great deal more memory than their structured counterparts. They
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employpointersto provideconnectivityintormationbetweencells,faces,edges,and nodes.Additionally,
approximatelyfiveto six timesmoretetrahedrathan hexahedraare requiredto ill] a givenregionwith
a fixed numberof nodes.This vastincreasein the numberof requiredcellsleadsdirectly to impractical
memoryrequirementsfor 3-Dviscousflowsimulations.Furthermore,resolutionof the strongdirectional
flowgradientsencounteredill viscousflOWSrequiresverythin gridelements.It is veryexpensiveto generate
tetrahedralcellswith highaspectratio to resolvesuchgradients.

Onesolution to tile dilemntabetweenhexahedraand tetrahedrais 1,ousea semi-unstructuredgrid
madeof prisms. Prismaticcellsarecomposedof triangular{'acesin tile lateral (body-surface)directions
and quadrilateralfacesin the normaldirection. Therefore,they canprovidethe geometricflexibility of
unstructuredgrids aswellastheorthogonalityandhighaspectratioqualitiesof structuredgrids.Results
havebeenobtainedusingprismaticgridstha.trevealtheh"suitability for resolvingviscoustlowphenomena
[3,4, 5]. The prismaticgrid requiresa setof pointersto definetheir basetriangularmeshcombinedwith
a singleindex for eachprism belongingto the samestack [4]. Finally, structureof the prismsin one
of the directionscanbe exploitedin orderto applydirectionalinultigrid accelerationwithin the viscous
regions[4,6].

Theareasbetweendifferentprismaticlayerscoveringthesurfacesof thedomaincanbequiteirregular.
Furthermore,the relevantflow featuresdo not usuallyexhibil lhe strongdirectionalitythat the viscous
stresseshave. Tetrahedralelementsappearto beappropriatetot theseirregularlyshapedregions.Their
triangular facescanmatchthe correspondingtriangularfacesof the prisms.

The presentwork employstwo familiesof grid elements:prismaticgrid cellsfor the viscousregion
and tetrahedralgrid cellselsewhere.A newadvancingfront type of methodis developedfor generation
of the tetrahedra,of the hybrid (prismatic/tetrahedral)mesh. The main featurethat is different from
previousadvaucingfront generators[7,8] is that it. doesnot requirea user-constructedbackgroundmesh
for determinationof the grid-spacingandstretchingpa.rameters.It shouldbenotedthat generationof the
backgroundmeshhasbeena very time-consumingand user-dependentpart of previousadvancingfront
methods.A specialoctreeis constructedvia a Divide-and-Conquer method of the space outside of the

region covered by the prisms. The grid spacing is then determined based on the size of local octants which

form the octree.

An important issue arising with use of senti-structured prislnatic grids is covering of narrow gaps in
between different bodies. In the present work, an Automatic Receding Method (ARM)is developed that

relies on receding the prisms layers that surround each body. The gap that the prisms leave is filled with

tetrahedra. The case of a two-element wing is considered as a test of the technique.

A ttigh Speed Civil Transport (HSCT) type of aircraft geometry is considered in order to investigate

efficiency and to demonstrate robustness of the method in handling relatively complex topologies. The

generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral

mesh been used in the prisms region, as well.

A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is de-

veloped to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation

scheme that couples division of tetrahedra, as well as 2-D directional division of prisms.

GENERATION OF PRISMS

An unstructured triangular grid is employed as the starting surface to generate a prismatic mesh. This

grid, covering the body surface, is marched away from the body in distinct steps, resulting in generation of
semi-structured prismatic layers in the marching direction. The goal of the marching scheme is to reduce
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the curvatureof the previousmarchingsurfaceat eachstepwhileensuringsmoothgrid spacingto avoid
surfaceoverlap.Theprocesscanbevisualizedasa gradualinflationof the body'svolume.Therearethree
main aspectsof the algebraicgrid generationprocess:(i) determinationof the directionsalongwhichthe
nodeswill march(marchingvectors),(ii) determinationof the distanceby which the nodeswill march
alongthe marchingvectors,and (iii) smoothingoperationsoll positioningof the nodesoll the newlayer.

Determination of the Marching Vectors

Eachnodeon the marchingsurfaceis advancedalonga marchiugvector. The marchingdirectionis
basedon the node-manifold, which consists of the group of faces surrounding the node to be marched. The

primary criterion to be satisfied when marching is that the new node should be visible from all the faces
on the manifold.

The node-normal vector lies on the bisection plane of the two faces on the manifold that form the

wedge with the smallest angle. Its location on this plane is determined by bisecting the visibility region

on the plane. This process has yielded consistently valid normal vectors at the nodes by constructing the

vector most normal to the most acute face planes. Essentially, it does this by maximizing the minimum

angle between the node-normal and all the surrounding face normals. A more detailed description of the

marching procedure can be found in [3].

Since the visibility requirement is a necessary one in order to obtain a valid grid, all subsequent

smoothing operations performed on the original normal vector enforce the visibility constraint.

Marching Step Size

Determination of marching distances is based on the characteristic angle/3_,_ of the manifold of each

node to be marched. This angle is computed using the average dot product between the pairs of faces

forming the manifold. The marching distance is a linear flmction of/3a,¢. It yields relatively large march-

ing distances in the concave regions, and small distances in the convex areas of the marching surface.
Specifically, the distance An is:

An = (1 + a)An_,,_, (1)

where Ana,¢ is the average marching step for that layer, aim c_ is a linear function of the manifold angle

/_a,_. The sign of a is positive for concave regions and negative for convex regions.

The average marching step for each layer, Anew is computed based on a user specified initial marching

step Ano and a stretching factor ,st. The actual marching step for layer j is given by:

A_,_ = AT_o× ,st0-_). (2)

Smoothing Steps

The initial marching vectors are the normal vectors. However, this may not provide a valid grid since

overlapping may occur--especially in regions of the grid with closely spaced nodes. To prevent overlapping,

the directions of the marching vectors must be altered. A number of smoothing passes (typically 5) are

performed over all the nodes on the marching surface. Weighted Laplacian smoothing is applied to the
direction of the marching vectors as follows:
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whereV/ and _ are the initial and final marching vectors of node i , while 17j are the marching vectors

of the surrounding nodes j that belong to the manifold of node i. The weighting factor w is a function of

the manifold characteristic angle fla,e. It has small values in concave regions, and relatively large ones in

convex areas. The averaging of the marching vectors of the neighboring nodes is distance-weighted with

dij denoting the distance between nodes i and j.
A similar procedure is employed for the smoothing of the marching steps An.

Constraints Imposed to Enhance Quality

Typical Navier-Stokes integration methods impose restrictions on the spacing of the points along the

marching lines, as well as on smoothness of these lines. In other words, the prismatic grid should not be

excessively stretched or skewed. In the present work, two constraints are imposed on the positioning of

points on the marching lines, as well as on the deviation of the direction of the marching vectors from one

layer to the next. The ratio of the grid spacings along the marching lines of any two consecutive prisms

layers should be less than a stretching factor st:

(1 - st)Antj_l < &nlj < (1 + st)Anlj_l, (4)

where the subscripts j - 1 and j denote the order of points along each marching line. A typical value of

the allowed stretching factor st is 0.2. Furthermore, the angle between two consecutive marching vectors

17j_1 and Vj should be less than a specified angle of 30 °.

Scalability of Prisms Generation Time

Grid generation time depends on the number of boundary faces, as well as on the number of prisms layers
that are created. The cases of mesh generation around an ONERA M6 wing and an HSCT configuration

are employed in order to study how the time scales with these two factors. Three different surfaces

triangulations of the M6 wing are considered. The first consists of 3239 faces, the second of 8807 faces,
while the third has 15279 faces. Figure 1 shows almost linear increase in generation time with number of

boundary faces. The number of generated prisms layers was kept the same in all three cases and equal

to 24. Perfect linear scaling of the mesh generation time with number of prisms layers is demonstrated in

Figure 2. This implies that the required operations of the generator are exactly the same for each layer.

OCTREE/ADVANCING FRONT TETRAHEDRA GENERATION

A new method is presented for generating the tetrahedra of the hybrid grid. Advancing front type of

methods require specification by the user of the distribution of three parameters over the entire domain to

be gridded. These field functions are: (i) the node spacing, (ii) the grid stretching, and (iii) the direction

of the stretching. In the present work these parameters do not need to be specified. The distribution of

grid size, stretching, and direction of stretching is automatically determined via an octree. There is no
need for a special background mesh which has been the backbone of previous advancing front generators.

The tetrahedra that are generated should progressively become larger as the front advances away from

the original surface. Their size, the rate of increase of their size, as well as the direction of the increase

are given from an octree consisting of cubes which is generated automatically via a Divide-and-Conquer

method. This process generates octants that are progressively larger with distance away from the body.

Their size will be the characteristic size of the tetrahedra that will be generated in their vicinity.
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Generation starts from the outermost surface of tile layer of prisms surrounding tile body. The triangles

of this surface form the initial front. Then, a list of points is created that consists of a new node, as well

as of "nearby" existing points of the front. One of these points is chosen to connect to the vertices of

the face. Following choice of tile point to connect to, a new tetrahedron is formed. The list of the faces,

edges, and points of the front is updated by adding and/or removing dements. The algorithm followed

in the present work is tile one presented in [8, 9]. The method requires a data structure which allows for

efficient addition/removal of faces, edges and points, as well a.s for fast identification of faces and edges

that intersect a certain region. The alternating digital tree (ADT) Mgorithm is employed for" these tasks.

A Special Octree for Tetrahedral Grid Spacing Control

The divide-and-conquer process starts with a master hexahedron that contains the body. This hexa-

hedron is recursively subdivided into eight smaller hexahedra called octavzts. Any octant that intersects

the body is a boundary octant and is subdivided further (inward refinement). The subdivision of those

boundary octants ceases when the size of the boundary octant matches the thickness of the prisms on the

outermost prisms surface.

Then, the hexahedral grid is further refined in a bahmcil_g pvvcess (outward refinement) to prevent

neighboring octants whose depth differs by more than one (interfac_ octaT_ts). Outward refinement is

performed to ensure that the final octree varies smoothly in size within the areas no1 covered by' the

prisms. The sole criterion tor outward refinement is a depth difference greater lhan one between the octant

itself and any of its neighbors. Only interface octants are subject to outward refinement. Figure 3 illustrates

the growth of the size of the octants away front the surface. The figure shows the outermost prisms surface

around a High Speed Civil Transport (ttSC'T) type of aircraft geometry, as well as a cut through the

octree. Growth of the octants away from the outermost prisms surface guides growth of the corresponding

tetrahedra. Figure 4 illustrates the symmetry plane of the IISCT geometry. The quadrilaterals (dark lines)

correspond to the faces of the octants on this plane, while the triangles (light lines) corresl)ond to the faces

of the tetrahedra. It is observed that the size of the tetrahedra, as well the stretching of the mesh and the

direction of stretching is guided quite accurately by the octree.

Simplicity and no user intervention are main advantages of the octree. The usual trial-and-error

procedures for constructing the field functions that give the local size of the telrahedra, the stretching of

the mesh, and the direction of the stretching (I)ackground mesh) for previous advancing front generators

are avoided in the present method. The octree is generated once and remains lhe same lhroughout the

generation process.

Determination of Size of the Tetrahedra

The advancing front method creates a new tetrahedron by connecting each face of the current front to

either a new or an existing node. This point, is found by using a characteristic distance b which is calculated

from the size of the local octant to which the face of the front belongs.

The local characteristic size _ is calculated as follows:

= 1I.,/, (5)

where H is the size of the boundary octants, st is the stretching parameter, and l is the level of the local

octant to which the face of the front belongs. The values of l range from 0 (boundary octant) up to a

number equal to the number of recursive subdivisions of the initial (master) hexahedron. A typical value
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of the stretchingparameter,stis 1.8.Thesmallerthevalueof st, the smoother the variation in size of the

generated tetrahedra. However, a very small value results in generation of a very large number of elements.

The chosen value is a compromise between the two effects. Further details of the method are given in [11].

THE AUTOMATIC RECEDING METHOD (ARM) FOR HYBRID GRID

GENERATION AROUND MULTI-BODY DOMAINS

The developed hybrid grid generation method is flexible and general in order to treat domains that

contain multiple bodies. A prismatic layer is created around each one of tile bodies, while the regions in

between these meshes are filled with tetrahedra. Any location and orientation of these bodies is allowed.

This is accomplished via. a special method for treatment of narrow gaps that frequently form in multiply-

connected domains, such as multi-elenmnt wings. The key feature of the method is the fact that the

prismatic grid around each of the bodies is generated independently of all the other bodies. As a result,

such generation is as simple as the generation of prisms for a domain containing a single body. However,

overlapping meshes are avoided here by ernploying a special technique that redistrihutes the prisms nodes

along their corresponding marching lines after the initial generation. This redistribution occurs in the

vicinity of the regions of overlapping prismatic meshes and results in formation of gaps in between the

previously overlapping prisms layers. Then a tetrahedral grid is generated in order to fill in those gaps. It

should be enq)hasized that the structure of the prismatic grid is not destroyed.

Receding of the Prism Layers

Receding of the prisms nodes occurs along the marching lines that intersect with another prismatic

mesh. The distance over which the outermost point is "pulled-back" depends on the local extent of

overlapping. In order to avoid at)rul)t changes in the thickness of tile layer due to tile local receding,

the nodes belonging to the neighboring marching lines are also receded to a certain extent.. This extent

gradually reduces to zero away from the area of overlapping of the meshes. Furthermore, the marching

line is not altered due to the rearrangemenl of the points on it. Finally, redistribution of the points along

each marching line obeys the constraint on allowable stretching of the mesh. As a result, the spacing of

the first point off the surface is reduced which will have no adverse effect on accuracy of solutions.

The steps that are followed in order to remove overlapping of a specitic t)air of prism layers are:

1. Find tile marching lines of each one of the separate I)rismalic meshes that intersect with one or more

of the other grids.

2. Calculate the length of overlapping of each one of the marching lines of the two or more prismatic

meshes that overlap.

3. Redistribute the nodes on these marching lines so that no overlapl)ing occurs. Essentially, this results

in receding of the nodes closer to the t)ody surface.

4. Avoid abrupt changes in the thickness of the prisms layers by receding neighboring inarching lines

that do not intersect. "Fhis is accomplished by flagging the neighboring marching lines and calculating

the distance of receding (A'n") according t.o:
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where the subscript neib denotes the marching lines that are neighboring the specific lille, and N is

the number of neighboring lines. This lateral smoothing process is repeated a. few times (typically
10).

An integral part of the previous method of receding is repositioning of all the points oil the marching

lines that are 'pulled-back'. A scheme is employed which redistributes the nodes so that the shape of the

lines is not altered. In other words, the marching directions are maintained, but the marching distances

between consecutive points are modified. This is accomplished by performing a cubic-spline fit to each of

the marching fines using the prism node locations for the spline knots. The nodes are then redistributed

along the spfined lines. Tile distribution is such that the new node-positions satisfy the grid spacing

constraint. In the present, work, a certain stretching factor is maintained, while tile spacing of the first

point off the body surface ix reduced.

Application to Two-Element Wing with Variable Gap Size

In order to illustrate validity of the previous procedure, tile case of a two-element wing with variable

size of the gap between the main wing and its flap is considered. Figure 5 shows the geometry of the

two-element wing. The gap increases along the span. Stage one involves generation of the two separate

prismatic meshes that cover each one of the two bodies. Generation is quite simple due to the fact that

each layer of prisms is grown independently of the other layer. The two grids overlap locally a.s shown

in Figure 6. In the second stage, the thickness of the prisms layers is reduced locally and the overlap no

longer occurs as shown in Figure 7. Comparing the grids of Figures 6 and 7, it is observed that the receding

occurs over a larger region which results in a smooth variation of the local thicknesses of both meshes. The

final stage involves generation of the tetrahedral mesh that covers all areas in between the prisms. Figure 8

shows the final hybrid (prismatic/tetra.hedral) grid on the plane of symmetry. The quadrilaterals are the

signature of the prisms on that plane, while the triangles correspond to faces of the tetrahedral mesh.

HYBRID GRID GENERATION AROUND THE HSCT

A High Speed Civil Transport (llSCT)-type of aircraft, geometry was chosen as lhe test case for the

developed grid generator. Figure 9 shows the triangulation of the initial surface. The mesh consists of

4412 triangles and 2275 nodes. A symmetry plane is considered that divides the body. Thus, hyt)rid grid

is generated for half of the space.

The time required to generate tile prismatic grid around the ttSCT was 90 seconds for 40 layers of prisms

on an IBM 390 workstation. Generation of approximately 170,000 tetrahedra took about 67 minutes on the

same station. It should be emphasized that employment of a hybrid grid for the HSCT geometry required

only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms

region, as well.

A view of the grown prismatic surface is shown in Figure 10. The growth of the grid ix illustrated after

40 marching steps. The effect of the marching process is similar to inflating of the original body volume.

Figure 11 shows portion of the initial wing surface, as well a.s the outer surface of the prisms. Both the

structured part (quadrilateral faces), and the unstrm'l ured part (triangular faces) of the prisms is shown.

Every fourth layer of prisms is shown for clarity of the plot. Two wire-frame views of the prismatic grid

are illustrated in Figure 12. The shaded regions correspond to the surface of the aircraft.

Three different stages in the growth of the tetra.hedral mesh on to[) of the prisms is shown in the

sequence of Figure 13. The space between the outer prisms surface and the farfield is 'filled up' quite fast.
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It is worth observing the transition of the hybrid mesh from the prisms to the tetrahedra. Figure 14

shows the hybrid grid at a section of the symmetry plane of the aircraft. The quadrilateral faces correspond

to the prisms, while the triangular faces belong to the tetrahedra. It is observed that the grid transitions

smoothly from the prisms region to the tetrahedral area.

The final hybrid grid consists of 176,480 prisms and of 170,300 tetrahedra. Figure 15 shows the signature

of the mesh on the symmetry plane. Finally, Figure 16 illustrates the hybrid mesh on two different planes

that are perpendicular to each other. The first plane is the symmetry and it is indicated by the darker

fines, while the second is intersecting the fuselage at a location upstream of the wing and it is shown via

fight lines. It should be noted that the irregularity of the lines observed on the second plane are due to

the fact that the grid it intersects is not planar as it is on the symmetry plane.

COMBINED REFINEMENT/REDISTRIBUTION FOR HYBRID GRIDS

A dynamic grid adaptation algorithm has previously been developed for 3-D unstructured grids [10].

The algorithm is capable of simultaneously refining and un-refining appropriate regions of the flow domain.
This method is extended to the present work and is coupled with prismatic grid adaptation to implement

a hybrid grid adaptation method.

Directional Division of Prisms

The prisms are refined directionally in order to preserve the structure of the mesh along the normal-to-

surface direction. The prismatic grid refinement proceeds by dividing only the lateral edges that lie on the

wall surface and hence the wall faces. The faces are divided either into two or four subfaces. The resulting

surface triangulation is replicated in each successive layer of the prismatic grid. This results in all the

prisms that belong to the same stack (namely, the group of cells that originate from the same triangular

face on the wall surface) getting divided alike. The prismatic grid refinement preserves the structure of

the initial grid in the direction normal to the surface. The primary advantage of using such an adaptive

algorithm for prisms is that the data structures needed for its implementation are essentially as simple as

that for refining a 2-D triangular grid.

The directional division of the prisms does not increase resolution of flow features that are aligned in

a direction that is normal to the wall surface. However, a grid redistribution algorithm can be employed

in order to recluster nodes in the normal direction so as to better resolve the viscous stresses [3, 11].

The tetrahedral cells constitute the portion of the grid where inviscid flow features are dominant.

These features do not exhibit the directionality that is generally prevalent in viscous stresses. Hence, the

tetrahedra are refined by division into eight, four, or two subcells [10].

Redistribution of Prisms

The redistribution algorithm increases local grid resolution by clustering existing grid points in regions

of interest. A measure of the grid resolution required normal to the no-slip wall is the values of y+ = v '

with u_ = ,_ being the wall friction velocity. A criterion based on the values of y+ at the wall is
V PwaH

employed to either attract nodes towards the wall or repelthem away from the surface so that a specific value

of y+ is attained at all the wall nodes. This procedure in essence determines a new value for the spacing

(_tl of the first node off the wall at all locations on the wall surface. The nodes in the prismatic region
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are then reclustered along the marching lines emanating from the corresponding wall node, in accordance

with the new value of $w_u. Details are presented in [4].

Application of Hybrid-Adaptation Method

The test case of flow past a sphere at a free stream Math number of M,x_ = 1.4 and a Reynolds number

of Re = 1000 (based on the radius of sphere) is considered. Tile flow is characterized by both inviscid and

viscous flow features such as shock waves and boundary layer separation. Details are given in [4].

The hybrid grid adaptation algorithm is implemented to obtain a numerical solution for the flow

situation discussed above. A coarse hybrid grid comprising ,-, i_00 wall boundary nodes and --, leeK

tetrahedra is used as the initial grid. The prismatic region is constituted by 20 layers of prisms. The

locally adapted grid obtained after h-refinement based on an initial solution and the Mach number contour

lines of the final solution obtained on tile adapted grid are shown simultaneously in l:'igure 17. The

figure shows the embedded tessellations on the wall surface, symmetry plane as well as on an equatorial

plane cutting through the interior of the grid, normal to the symmetry plane. Mach numtmr contour

lines are shown superimposed on the embedded mesh on the equatorial plane in the tigure. It is clearly

seen that embedding in the tetrahedral region is focussed near the shock location just outside of the

prismatic-tetrahedral interface. The prismatic region is also directionally refined near the upstream and

downstream sections of the body. This is due to the flow upstream accelerating rapidly from the upstream

stagnation point and tile flow downstream separating that causes flow gradients in the lateral directions

that are detected by the directional adaptive algorithm. The embedded hybrid grid comprises ,-_ 2500

wall boundary nodes and ,,_ 275K tetrahedra. The numerical solution obtained by the solution-adaptive

approach is conlpared with that of the solution obtained on a globally refined grid, slarting with the same

initial coarse mesh as before. The values of skin-friction coefficients computed on the wall surface are

compared between the two solutions, as shown in Figure 18. The figure shows the excellent agreement of

the results computed on the locally adapted grid with that of the globally refined grid.

SUMMARY

Generation of the tetrahedra was made simpler due to the fact that a background mesh was not required

for determination of the mesh spacings. The spacing parameters provided by, the octree yielded tetrahedral
elements that varied in size smoothly. Furthermore, the octree enabled a smooth transition of the grid

from the prisms to the tetrahedra.

The time required to generate the prismatic grid around the IISCT type of configuration was 90 seconds

for 40 layers of prisms on an IBM 390 workstation. This time scales ahnost linearly with the number of

boundary faces. Generation of approximately 170,000 tetrahedra took about 67 minutes on the same
station.

Employment of a hybrid grid for an HSCT-type of geometry required only 170 K tetrahedra instead of

an estimated two million had a tetrahedral mesh been used in the prisms region, as well.

The developed method of receding prisms layers (ARM) for narrow gaps between different bodies was

validated via a case of a two-element wing wilh variable size of the gap between the two elements.
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Figure 1: Scaling of prisms generation time with number of boundary faces.

Case of the ONERA M6 wing with 24 layers of prisms.
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Figure 2: Linear increase in prisms generation time with number of prismatic layers.

Case of the HSCT aircraft with 4412 boundary faces.
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Figure 3: Outward refinement results in gradual growth of the octree.

3-D section of domain showing the outer prismatic surface and the octants.
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Figure4: Effectof theoctreeon growthof thetetrahedra.
View of the octants(quadrilateralfaces),aswell asof the tetrahedra(triangular faces)on the symmetry
plane.Growthof the tetrahcdraawayfromtheoutermostprismssurfacefollowsgrowthof theoctreequite
faithfully.
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Figure5: Geometryof two-elementwingwith a variablesizegapbetweenthe mainwing andthe flap.

Figure6: Prismaticgrids growaroundeachbody independentlyof oneanother(view on the symmetry
plane).

Figure7: Mutual recedingof the two prismaticgrids removesprior overlapping(view on the symmetry
plane).
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Figure 8: Tetrahedral grid fills the areas in between the two prismatic meshes (view on the symmetry

plane).

Lower portion: Enlarged view of the gap region between tile two bodies.
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Figure 9: Triangulation of the HSCT surface (4412 triangles, 2275 nodes). A symmetry plane is considered.

Figure 10: View of the outer surface of the prismatic mesh of the HSCT.
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Figure11: View of the initial andfinal prismssurfacesaroundthe HSCTaswellasof the quadrilateral
facesof theprisms(everyfourth layeris plotted).
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Figure 12: Wire-frameviewsof the grown prismaticmesharoundthe wing of the HSCT (shaded area
denotes the surface of the aircraft).
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Figure13:Viewof differentstagesin growthof the layerof tetrahedraawayfromthe prismsoutersurface
for the HSCT.
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Figure 14: Smooth transition of the hybrid grid from the prisms to the tetrahedra. Partial view of the

mesh on the symmetry plane.
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Figure 15: View of the hybrid grid on the symmetry plane of the HSCT. The quadrilateral faces correspond

to the prisms, while the triangles belong to the tetrahedra.
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Figure 16: View of the hybrid mesh around the HSCT on two different planes that are perpendicular to

each other. The first plane is the symmetry (dark lilles), while the second is intersecting the fuselage at a

location upstream of the wing (light lines).
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Figure 17:An isometricviewof thetessellationon the wallsurface,symmetryplaneandan interiorequa-
torial planeand Machnumbercontourlineson theequatorialplane.Hybridgrid embeddedisotropically
in the tetrahedralregionanddirectionallyin the prismaticregion.(Mmin= 0., Mm_ = 2., AM = 0.05).
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Figure 18: Comparison of Skin-friction coefficients at the wall, on the equatorial plane normal to the

symmetry plane.

-- Globally refined hybrid grid solution, - - - Locally embedded hybrid grid solution.
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